To appear in Simulation of Adaptive Behavior 1994.

Evolution of Corridor Following Behavior in a Noisy World

Craig W. Reynolds

Electronic Arts
1450 Fashion Island Boulevard
San Mateo, CA 94404, USA
telephone: 415-513-7442 / fax: 415-571-1893
creynolds@ea.com
cwr@red.com

Abstract

Robust behavioral control programs for a simulated 2d
vehicle can be constructed by artificial evolution. Corri-
dor following serves here as an example of a behavior to
be obtained through evolution. A controller’s fitness is
judged by its ability to steer its vehicle along a collision
free path through a simple corridor environment. The
controller’s inputs are noisy range sensors and its output
is a noisy steering mechanism. Evolution determines the
quantity and placement of sensors. Noise in fitness tests
discourages brittle strategies and leads to the evolution
of robust, noise-tolerant controllers. Genetic Program-
ming is used to model evolution, the controllers are rep-
resented as deterministic computer programs.

1 Introduction

Designing reactive controllers for autonomous agents can
be a challenging task. For increasingly complex behavior,
building controllers by hand becomes prohibitively difficult.
As suggested in [Cliff 1993b], a promising alternative is to
evolve the controllers, using their ability to perform the de-
sired behavior as a measure of fitness. In these experiments,
corridor following behavior is used as a simple test case,
representative of the more complex behaviors to which this
approach might eventually be applied.

Previous work [Reynolds 1993b] has shown that the
Genetic Programming Paradigm [Koza 1992] can be used to
automatically create control programs which enable a simple
moving 2d vehicle to avoid collisions with obstacles by
mapping sensory input (range data) into motor output
(steering action). In those experiments all fitness tests were
identical. As a result, the control programs evolved to use
brittle strategies. Their success was like a “house of cards”
which stands only until anything changes.

In the absence of variability in fitness testing, evolution
will discover solutions that capitalize on the deterministic,
precisely repeatable nature of the fitness tests. Evolved
controllers will come to depend on utterly insignificant
coincidental properties of the vehicle's sensors, its actuators,
and their interaction with the environment.

The current work concerns an approach to avoiding this
brittle behavior and seeks to evolve robust, general purpose
control programs for the corridor following problem. De-
terminism is removed from fitness testing by injecting noise
into the system. This noise will tend to “jiggle” coincidental

relationships between elements of the system and so tend to
discourage evolution from capitalizing on them. A house of
cards cannot be built on a shaky table.

The controllers evolved in this work are computer pro-
grams composed of basic arithmetic operations, condition-
als, and a function to aim and read a nonlinear proximity
sensor. The number and orientation of sensors are deter-
mined through evolution of control programs. On each
simulation step control programs read their sensors and
compute a steering angle. The vehicle always moves for-
ward at a constant rate, so steering is its only means of
avoiding collision.

These experiments have produced robust control pro-
grams capable of corridor following behavior in the pres-
ence of noise. Figure 1 shows some examples of successful
behavior.

Figure 1: Several collision-free runs.



2 Related work

An early series of experiments [Reynolds 1993b] used
Genetic Programming to create reactive controllers for a
similar obstacle avoidance task. The fitness test employed a
single, precisely repeatable simulation-based fitness test.
This allowed evolution to take the easy path to discover a
program which only solved this one specific control task.
There was no incentive, no survival advantage, to find a
controller that could generalize. As a result, the evolved
controllers were “brittle” and could not solve similar but
slightly different problems.

Subsequent experiments [Reynolds 1994a] attempted to
use noise to promote robust solutions to the corridor follow-
ing task, but were unsuccessful. The most significant dif-
ference between those experiments and these is the addition
of a syntactic constraint to the sensor-reading function. In
the earlier work, the control program could rotate its sensors
relative to the vehicle. In the current work, the sensors are
fixed to the vehicle during its run. Sensor orientation is still
subject to change by the action of evolution.

Closely related to these experiments is the work of the
Evolutionary Robotics Group at the University of Sussex.
While using a different model of evolution (SAGA [Harvey
1992]) and a different model of controller architecture
(dynamic, recurrent neural nets [Cliff 1993a], [Cliff 1993b],
and [Harvey 1993]) they have investigated closely related
problems in evolution of robotic controllers. They were the
first to document the beneficial role of noise in the
evolution of robust robotic controllers. The general
approach used here, of evolving stimulus-response behavior
based on simulated performance using simulated perception
inside a closed simulated world, was originally inspired by
[Cliff 1991a] and [Cliff 1991b]. The specific technique
used here, of taking the “worst of four noisy trials” came
directly from [Harvey 1993] and [CIiff 1993a].

The experiments reported here have much in common
with some of Koza's work, particularly the evolution of be-
haviors such as “wall following” and “box pushing” as
reported in [Koza 1992]. See also Simon Handley's GP
robotics work [Handley 1994].

The evolution of robust controllers is related to the larger
problem of generalization in evolutionary computation.
This issue of generalization is an active area of research in
many branches of evolutionary computation. In GP, see for
example [Tackett 1994] on the evolution of generality in a
classification problem, and [Kinnear 1993] on generalization
in sorting.

Earlier work on obstacle avoidance behavior based on
remote (distal) sensors (as opposed to touch sensors) for
vehicles moving at “moderate speed” can be found in
[Reynolds 1987], [Reynolds 1988], [Mataric 1993] and
[Zapata 1993], among many others.

A classic reference on controllers and behaviors for this
class of vehicle is [Braitenburg 1984] which is highly
recommended.

3 Vehicle

The design of the simulated vehicle used in these
experiments is kept intentionally vague and abstract. It

could equally well represent an animal as a wheeled or
legged robotic vehicle. The intent is to gloss over the low
level details of locomotion and to concentrate instead on the
more abstract issues of “steering” and “path determination.”
(Not “path planning,” since these reactive controllers neither
plan nor learn.) In order to survive, the controllers need
only steer along a clear pathway while avoiding contact with
the danger region surrounding it. The skill involved is
similar to that required by a squirrel running along a tree
branch, or by an automobile's driver, negotiating through a
narrow alley.

The control programs evolved by Genetic Programming
represent the vehicle's “thought process” for a single
simulation step. During fitness testing, the evolved program
is run at each time step of the simulation. Using its sensors,
the program inspects the environment surrounding the
vehicle from its own point of view (that is, relative to the
vehicle's local coordinate space), performs some arithmetic
and logical processing, and decides how to steer (adjust the
heading of) the vehicle. The value returned by the control
program is interpreted as a steering angle. The vehicle then
automatically moves forward by a constant amount (half of
its body length). The fitness test continues until the vehicle
takes the required number of steps (50), or until it collides
with one of the obstacles. The raw fitness score for each
corridor run is the number of steps taken divided by the
maximum number of steps, producing a normalized score
between 0 and 1, with 1 being best.

These vehicles have a fixed minimum turning radius
because the maximum per-simulation-step turn is limited to
+0.05 revolutions (18 degrees or 0.31 radians). This
limitation implies a minimum turning circle which is
somewhat larger than the width of the corridors of the
obstacle course. As a result, the vehicle cannot spin in
place, it cannot turn around in the corridor, and its only
choice is to travel along the corridor.

Limiting turning radius produces a model of a vehicle
moving at “moderate” speed. This qualitative description is
intended to capture a relationship between the vehicle's
momentum and its available turning acceleration. At “low”
speed a vehicle has relatively little momentum, in a single
time step it might be able to bring itself to a stop, or make
an abrupt change of heading. At moderate speed
momentum begins to dominate acceleration and changes of
heading require many time steps. In this speed regime,
maneuvers are less abrupt and paths tend to curve more
gently, producing a motion more like running than crawling.

4 Corridor and Fitness Testing

The training environment used in these experiments was
designed to test a control program’s ability to follow a
corridor, and to quickly reject those which are completely
unsuited to the task. This approach allows the majority of
the computational effort to go into testing higher fitness
individuals. A fitness function based on this kind of
simulation has the desirable property that execution time is
roughly proportional to the individual's fitness.

Figure 2 shows the corridor and an series of increasingly
successful runs. The vehicle is initialized in the center of



the corridor and pointing toward one wall or the other.
Initial random headings range from 0.1 to 0.15 revolutions
(36 to 54 degrees) off of the corridor's midline. If a
controller turns continuously (see Figure 2(a)) or does not
steer at all (see Figure 2(b)), it will run into a wall almost
immediately. To survive more than a few steps the
controller must develop the skill of sensing and turning
away from a glancing collision so it can proceed down the
corridor. To reach higher fitness levels the vehicle must be
able to safely negotiate U-turns in both directions, right-
angle turns in both directions, and long straight corridors.

In the early stages of evolution most of the controllers are
quite inept and so incapable of following the corridor for
long. During this stage it is important to notice and
encourage progress, no matter how slight. In the initial
population only a few controllers can take more than one or
two collision-free steps so the scoring system must
differentiate between degrees of ineptness, as illustrated in
Figure 2. Later in the run some controllers will have
progressed to the point where they can occasionally make a
collision-free run through the corridor. At this stage the
point of fitness testing begins to be reliability. One way to
address this is to look at the controller’s performance on a
series of corridor runs. These considerations lead to the
following scheme for each fitness trial: the controller is
allowed to make a run through the corridor, if no collisions
occur it is allowed to make another run, and so on up to a

maximum of 16 runs. This creates a selection pressure for
controllers to be able, at least occasionally, to make it all the
way through the corridor so as to have a chance at another
run. This approach also serves to further focus effort on
promising controllers: we don’t even bother with a second
trial unless the controller has “proven” itself worth on the
first trial.

The scores of all runs of a trial (up until the first
collision) are weighted and summed. The first collision-free
run is worth 1/2, the second is 1/4, and so on. Figure 3
shows the cumulative fitness assigned to a controller based
on the number of collision-free runs. This weighting
scheme captures the idea of an open-ended reliability rating,
but is probably not significant now that tournament
selections is being used and all that matters is fitness rank.
Monotone functions do not alter rank.

An obstacle course used in earlier experiments had a
longer straight-away before and after the first turn. This
arrangement seemed to promote premature convergence,
particularly in small populations. Some individuals would
discover how to make it to the first turn (and sometimes past
it) but they would then so dominate the population that
diversity would be lost and the population would never
discover how to get around the second turn. In the
subsequent experiments described here these problems were
addressed in two ways. First, the long straight-aways were
moved from the beginning of the course to the end. This

a: 2% b: 4% c: 12%

d: 18%

e: 26% f: 34%

-

h: 52%

i: 68%

§: 0%

k: 78%

Figure 2: An assortment of runs, arranged in order of increasing scores. All but the last (n) end prematurely because of a collision.



forced the turning problem to be addressed sooner, and
weeded out the non-turners sooner. Second, the entire
obstacle course was mirrored at random about the axis of the
first corridor. This procedure ensured that evolving
controllers could turn equally well in both directions and so
prevented convergence towards right-turners.

Because the training corridor is laid out on a grid, it has
some built-in regularities. The passageway has uniform
width throughout. All walls meet at right angle corners.
Presumably evolution will construct controllers which
depend on these regularities. That is, in the absence of
counter-examples, it will assume that all corridors are the
same width. A different kind of training environment may
be required to evolve controllers capable of following
irregular corridors.

Figure 3: Fitness versus number of sequential
collision-free runs through the corridor.

5 Genetic Programming Considerations

The technique used to evolve computer programs in this
work is known as Genetic Programming and was invented
by John Koza. The best reference on this technique and its
application is [Koza 1992]. While often used as a gen-
erational technique, it is also possible to combine Genetic
Programming with Steady State Genetic Algorithms
[Syswerda 1989], [Syswerda 1991] as described in
[Reynolds 1993a].

A very brief description of Steady State Genetic Pro-
gramming (SSGP) follows. First a population of random
programs is created and fitness tested. (In these experiments
the population consisted of 2000 to 10000 programs.)
Thereafter SSGP proceeds by: (1) choosing two parent pro-
grams from the population, (2) creating a new offspring pro-
gram from them, (3) fitness testing the new program as de-
scribed in the previous section, (4) choosing a program to
remove from the population to make room, and (5) adding
the new program into the population. The parent programs
are chosen in a way that favors the more fit while not totally
ignoring the less fit, thus balancing exploration of the whole
gene pool with exploitation of the champions. In these ex-
periments this choosing is done using fournament selection

with k=7, that is: seven individuals are chosen from the
population at random, and the most fit of those seven is se-
lected as the winner. The recombination of two parents to
form a new offspring is accomplished by the Genetic Pro-
gramming crossover operator. GP crossover is a little like
“random cut and paste” but is done in a why that guarantees
the new program’s syntactic correctness.

Selecting a program to remove from the population could
be done by using inverse tournament selection: taking the
least fit of seven randomly chosen programs. However the
greedy nature of SSGP, combined with the noisy fitness
testing used in these experiments, leads to the possibility of
a mediocre-but-lucky program receiving an undeservedly
high fitness and going on to dominate the population. To
combat this possibility a modified removal policy was used
in these experiments: half the time inverse tournament
selection was used, the other half of the time an individual
was selected for removal at random (without regard to
fitness). Hence all programs, even the best one, had a
certain small but non-zero possibility of being removed at
each SSGP step. This tended to ensure that the population
could not stagnate with a collection of mediocre-but-lucky
programs, winning strategies were continually being
retested.

Because steady state genetic computation proceeds
individual by individual, there is no demarcation of
generations. However it is often convenient to describe the
progress or length of a SSGP run in terms of “generation
equivalents:” processing as many new individuals as there
are programs in the population.

Applying Genetic Programming to a problem requires
specifying several parameters such as the genetic population
size and the fitness function (both described above). In
addition we must specify the functions and terminals that
define the language in which evolved program will be
expressed. In these experiments the terminals were simply
random floating point numbers. The function set consisted
of:

+
*

%
abs
iflte
look-for-obstacle

The first three are the standard Common Lisp function
for addition, subtraction, and multiplication. The % and
iflte are standard GP functions [Koza 1992]: % is “protected
divide” (returns zero when denominator is zero), and iflte
is an arithmetic conditional (if A is less than or equal to B,
then C, else D). abs is the standard Common Lisp function
for absolute value.

The 1ook-for-obstacle function is specific to the obstacle
avoidance problem. It takes a single numeric argument
which represents an angle relative to the current vehicle
heading. Angles are specified in units of revolutions, a
normalized angle measure: 1 revolution equals 360 degrees
or 2w radians. look-for-obstacle points its sensor in the
given direction and returns a measure of obstacle proximity.
In this implementation, the range is computed by performing
a 2d ray-tracing operation on the obstacles.



The Genetic Programming substrate used here, and the
application-specific functions for the simulation, were origi-
nally developed on Symbolics Lisp Machines. For the cur-
rent series of experiments, the software was ported to Mac-
intosh Common Lisp (version 2.0p2) and was run on Macin-
tosh Quadra 950 workstations. In this implementation, an
average fitness test (composed of up to 64 corridor runs) in
run z6 took about 65 seconds to perform.

6 Results

Three runs will be discussed in this section. One uses
fixed sensor positions, the other two allow the sensor
placement to evolve. The genetic population size and upper
limit on evolved program size also differ between the runs:

run: _ population: sensors: _ program size limit:
74 10000 fixed 50
76 2000 variable 35
77 10000 variable 35

Run “z4” used a fixed-sensor model. The vehicle was
defined to have exactly nine sensors, spaced 1/16 of a
revolution (22.5 degrees) apart across the vehicle’s front. (If
the vehicle’s heading is “north,” this would correspond to
placing sensors at compass points: W, WNW, NW, NNW,
N, NNE, NE, ENE, and E.) In Genetic Programming terms,
this was implemented by adding a set of nine sensor-reading
functions to the GP function set. For comparison with the
other two runs described below, this fixed sensor model
could also have been implemented by restricting the
argument to look-for-obstacle to be one of the nine numeric
values (3/4, 13/16, 7/8, 15/16, 0, 1/16, 1/8, 3/16, 1/4). In
this model, the evolved control programs would call various
sensor-reading functions, perform some arithmetic and
logical processing, and return a steering angle. Evolution
could not alter the sensor placement, it could only select
which sensors to use, and how to combine their readings.

This formulation of the corridor following turned out to
be very easy. So much so that the GP system almost solved
it by random search. The initial generation of a GP run
corresponds to random search over the space of programs
(subject to the limitation of size, function set, and terminal
set which are parameters to GP). During the initial
generation of 10000 random programs for run “z4,” the best
program had a fitness of 76.5%. This value represents better
performance than evolved in any of the previous variations
of this problem as reported in [Reynolds 1994a], even
though this program was found by random search before the
beneficial effects of evolution were applied to the
population. During the third generation equivalent (around
individual number 35000) of run “z4” it began to attain best-
of-population fitness scores above 99%.

Figure 5 summarizes the z4 population's fitness distribu-
tion over time. It shows a time series of discrete fitness his-
tograms portrayed as a bilinear surface. The population's
progress towards increasing fitness over time can be seen.
Dominating this landscape are fin-shaped features probably
caused by two artifacts of the fitness function. The corridor
is a series of turns, most runs end at a turn, so scores tend to

be clumped at certain values. Then as described in Figure 3,
this distribution is repeated at half scale, at quarter scale,
and so on for additional runs.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% T T T 1 1

(el o o o (e} o

(el (el (el (el (el o

(el o o o o o

(=] (=] (= (=] = (=

— N [sp} <t v O

Figure 4: Fitness plots for run z4.
(best-of-population and population average)

Koza has described what he calls the “lens effect,” [Koza
1994] the way in which every representation alters the diffi-
culty of a given problem. Koza explores the lens effect by
looking at the distribution of fitness values found during
random search through the specified program space. In
those terms, it appears that the fixed sensor representation of
the corridor following problem is a “lens” that makes the
problem quite easy to solve. An analysis of fitness distribu-
tion in the initial generation of these three runs can be found
in [Reynolds 1994b]. By that metric it appears that the fixed
sensor representation is easier than the variable sensor
representation, which is in turn easier than the original "rov-
ing" sensor representation of [Reynolds 1994a].

. . 7 //}/}/ o
Figure 5: Fitness histograms of run z4 over time.
While not the best-of-run, one high scoring (99.82%) and

compact (size 15) controller which caught the author’s eye
was this elegant three sensor design that appeared during the



fourth generation-equivalent (individual number 46515, see
Figure 6). It is shown here hand-simplified down to size 7:

(% (- (obs-3/16) (obs-13/16))
(- (obs-15/16) 2.5))

This program works by comparing the proximity of ob-
stacles (walls) at relative headings of £3/16 (the expression
(- (obs-3/16) (obs-13/16)) returns a value between -1 and 1
which indicates relative lateral proximity), then scales that
value down by dividing it by a number ranging between -2.5
and -1.5 which is related to the obstacle proximity at a
heading of -1/16. This appears to increase the rate of turn as
to the amount of free space “ahead” decreases.

The controllers evolved in run z4 were both more and
less complicated than the individual discussed above. Many
were variations on the same theme: divide the relative lateral
proximity by a sensor-dependent scalar, most varied only in
the form of modulation. At the end of the run, after about
6.5 generation equivalents, there were two individuals who
tested at 100% fitness. After simplification by hand, they
were of size 5 and 33:

(% (- (obs-3/16)
(obs-13/16))
-1.995)

(% (- (obs-3/16)
(obs-13/16))
(- (abs (iflte (obs-15/16)

0.0

(+ (obs-3/16)
(obs-7/8)
(obs-15/16))

(* (* (iflte (obs-1/8)

(obs-0)
(obs-1/8)
)
(iflte (obs-3/16)
(- (obs-1/8)
(obs-3/16))
(obs-7/8)
)
(obs-13/16)
0.5)
(obs-0)
(obs-1/8)
0.2)))

2.0))

Based on those results, run z6 was designed to test
whether evolution could correctly determine quantity and
placement of sensors in addition to determining how to
combine the various sensor readings into a correct steering
angle. The approach was to restrict the argument to look-
for-obstacle to be a number. That is, each call to 1ook-for-
obstacle has a constant numeric argument representing a
certain angle. Any number is allowed, but more
complicated expressions, particularly those involving
additional calls to look-for-obstacle are not allowed. When
a new program is created (randomly or by crossover) it is
checked to ensure that arguments to look-for-obstacle are
each numeric constants. When non-constant arguments are
found, they are replaced by a random number between 0 and
1. As a result, each call such as (look-for-obstacle 0.17)
corresponds to a sensor fixed at an arbitrary angular offset

from the vehicle’s heading. In this way, sensor morphology
can evolve in parallel with the processing needed to map
sensor data into a steering signal.

15/16

13/16 3/16

heading

Figure 6: Sensor morphology of individual z4-46515.

Sensors pointing in certain directions (such as directly
ahead) are presumably more relevant to corridor following
than sensors pointing in other directions (such as directly
behind). Therefore certain sensors, represented as code
fragments, will tend to increase the fitness of programs in
which they appear. This is known as the constructional
fitness of the code fragment [Altenberg 1994]. Programs
containing the more useful sensor-defining fragments will
have a survival advantage, and so those fragments will tend
to proliferate in the population. In this way the evolutionary
process decides which sensor directions are most useful for
solving the corridor following problem.

On the tenth generation equivalent of run z6, the best-of-
population individual has a fitness of 98.03%. This run de-
veloped a rather elaborate hitch-hiking intron' that has
spread throughout the population, so while the best-of-popu-
lation individual is almost as large as it can be (size 34),
most of its genetic material is irrelevant. After removing the
irrelevant intron wrapper this size 10 program remains:

(* (look-for-obstacle 0.13)
(look-for-obstacle 2.0)
(- (look-for-obstacle 0.81)
(look-for-obstacle 0.17)))

oON w@>

While based on a slightly different approach, this pro-
gram shares certain features of the program from run “z4”
analyzed above. Specifically, the subtraction (on lines C
and D) is computing the same sort of lateral proximity mea-
sure by taking the difference between a left pointing sensor

1 By analogy with its usage in biological genetics, the term in-
tron is used in GP to refer to code that is included in an evolved
program but which does not contribute to the program's action or
result. An intron is part of the genotype but not of the phenotype.
When an intron becomes structurally associated with a highly fit
code fragment, the intron can hitch-hike and so proliferate through
the population. In the case of run z6, essentially all programs had a
large no-op conditional wrapped around the active code.



and a right pointing sensor. In fact the left sensor used is
essentially identical to the left sensor used in the “z4”
program. The pair of sensors used here are not quite sym-
metrically placed: +0.17 revolutions on the right and -0.19
on the left. The lateral proximity value is then scaled down
by multiplication by two numbers each of which are
between O and 1. The sensor specified on line B points
directly ahead (2.0 revolutions is the same angle as O revo-
lutions) and the sensor on line A points 0.13 revolutions (47
degrees) to the right. Hence the lateral proximity signal is
reduced as the obstacle-free path, either ahead or to the
right, increases.

100%
90%
80%
70%
60%
50%
40%
30%
20% A
10%

0%

2000
4000 -
6000 4
8000 4
10000 4
12000
14000 |
16000 4

Figure 7: Fitness plots for run z6.
(best-of-population and population average)

Essentially all of the high-fitness individuals in run z6
use this same basic framework, within which there are a few
variations of the sensor placement. For example the best-of-
population individual at 21600 is identical except that it uses
the values 0, 2.0, 0.82, and 0.17 (on lines A, B, C, and D, re-
spectively). Effectively it has become a three sensor design,
since both forward-pointing sensors are at the same angle.
It is almost exactly symmetrical, which seems appropriate
for its task.

, q
el (s sl
) Wi, A
i f,‘;’:""l;:‘:’“ ‘/‘\:‘,,":‘" il
(W s s

L

Ll
i A o
i

o

i

2
7 b
L Irg:
Vit
”‘.““ //"/;ZZ;I/@/;”I’ o
)

K o
50 “ Y i
M 7 b i,
Sy s i g e s e e .
10 o i Time
g e s e o
0 W
L i g e sy i
30 P e i ity s
e e
40 Z g i ity s
e 10000
e
Fitness <

Figure 8: Fitness histograms of run z6 over time.

Run z6 found what might be regarded as a competent
controller, but one that is clearly less than perfect. To attain
100% fitness in these experiments, a controller must be able
to execute 64 (16 times 4) consecutive perfect runs through
the corridor, for a total of 3200 correct steps. The best-of-
generation fitness in z6 was always below 100%. This im-
plies that the failure rate for these controllers is at least once
in 64 runs. To put this in perspective, imagine a human
driver who averages one collision every 64 automobile trips!
While there is clearly room for improvement in the con-
trollers from run z6, there is also evidence that the popula-
tion became converged and would be unable to progress any
further.

Another run was attempted to duplicate and hopefully
surpass the results of z6. Run “z7” was identical to z6 ex-
cept that the population was increased by a factor of five to
10000. Unfortunately the run appeared to "top out" running
out of steam perhaps because the population converged too
rapidly on an inferior strategy. See Figure 9. After about 8.5
generation equivalents, the best of population was stuck at
40% and population average was leveling off at 15%. This
outcome demonstrates that evolutionary computation is a
stochastic technique, and not all runs succeed. There are
suggestions that most reliable way to use computational
resources is to use a series of many smaller runs in place of
a single large run.

7 Conclusions

These results indicate that behavioral control programs
can be evolved using Genetic Programming and a noisy
simulation-based fitness test. The solutions discovered by
this process are simple and robust. It appears that noise in
fitness testing discourages strategies that are brittle, oppor-
tunistic, or overly complicated. The only solutions that can
survive noisy fitness testing are compact and robust.

8 Future Work

As corridor following behavior developed in these exper-
iments it became clear that reliability is a difficult property
to measure. While competent behavior clearly arose, it is
hard to measure just how robust and how reliable these con-
trollers are. If we wanted to measure the reliability of a hu-
man automobile driver, what would be the criterion? Would
we count the number of collisions over a long period of
time, say a year? How would we differentiate between all
of the individuals who had zero collisions? Is a year a long
enough test period, and if not, how long are we willing to
wait for an answer? All of these same issue come up in try-
ing to rate the reliability of the corridor following controllers
evolved here. A topic of future study will be to determine
the most efficient techniques for testing reliability.

The competent behavior evolved in these experiments
represented a breakthrough after a long series of unsuccess-
ful experiments in applying very similar GP techniques to
the same problem. The fact that a seemingly tiny change in
the GP representation (restricting the argument of look-for-
obstacle to be a constant) made a huge difference in the
difficulty of the problem is a tantalizing result which de-
serves further study. What does this say about the problem



domain? What does it say about Genetic Programming?
How can we characterize this representational difficulty, and
how can we avoid it in the future? Some first thoughts are
explored in [Reynolds 1994b].

100% === === = mmmmmmmmmm e mmm e e
90% == mm e e
80% A== e m e
[0
60% F==--=meemmmeeemeeeaccaaaa.
LIV
40% +----

30% J_,JJ -----------------------
20%

10%
0%

10000

20000 4
30000
40000 A
50000 4

Figure 9: Fitness plots for run z7
(best-of-population and average-of-population).

Acknowledgments

This work was supported by Electronic Arts. The author
wishes to thank his supervisor Steve Crane and Vice Presi-
dent of Technology Luc Barthelet, for allowing blue-sky
research to coexist with product development. Thanks to
John Koza and James Rice for advice. Thanks to “assistant
GP guy” Emmanuel Berriet for providing extra CPU cycles.
Special thanks to my wife Lisa and to our first child Eric,
whose gestation corresponded with this paper's.

References

Altenberg, L. (1994) The Evolution of Evolvability in Ge-
netic Programming, in Advances in Genetic Programming,
K. E. Kinnear, Jr., Ed. Cambridge, MA: MIT Press.

Braitenburg, V. (1984) Vehicles, MIT press, Cambridge,
Massachusetts.

Cliff, D. (1991a) Computational Neuroethology: A Provi-
sional Manifesto, in From Animals To Animats: Proceed-
ings of the First International Conference on Simulation of
Adaptive Behavior (SAB90), Meyer and Wilson editors,
MIT Press, Cambridge, Massachusetts.

Cliff, D. (1991b) The Computational Hoverfly; a Study in
Computational Neuroethology, in From Animals To Ani-
mats: Proceedings of the First International Conference
on Simulation of Adaptive Behavior (SAB90), Meyer and
Wilson editors, MIT Press, Cambridge, Massachusetts.

Cliff, D. (1993a) P. Husbands, and 1. Harvey Evolving Vi-
sually Guided Robots, in From Animals to Animats 2: Pro-
ceedings of the Second International Conference on Simu-
lation of Adaptive Behavior (SAB92), Meyer, Roitblat and
Wilson editors, MIT Press, Cambridge, Massachusetts,
pages 374-383.

Cliff, D. (1993b) I. Harvey, and P. Husbands, Explorations
in Evolutionary Robotics, Adaptive Behavior 2(1), pages
73-110.

Collins, R. J. (1992) Studies in Artificial Evolution, Ph.D.
thesis, University of California at Los Angeles..

Handley, S. (1994) The Automatic Generation of Plans for a
Mobile Robot via Genetic Programming with Automati-
cally defined Functions, in Advances in Genetic Program-
ming, K. E. Kinnear, Jr., Ed. Cambridge, MA: MIT Press.

Harvey, I. (1992) Species Adaptation Genetic Algorithms:
The Basis for a Continuing SAGA, in Toward a Practice
of Autonomous Systems: Proceedings of the First Euro-
pean Conference on Artificial Life, Varela and Bourgine
editors, MIT Press/Bradford Books, pages 346-354.

Harvey, 1. (1993) P. Husbands, and D. CIliff, Issues in Evo-
lutionary Robotics, in From Animals to Animats 2: Pro-
ceedings of the Second International Conference on Simu-
lation of Adaptive Behavior (SAB92), Meyer, Roitblat and
Wilson editors, MIT Press, Cambridge, Massachusetts,
pages 364-373.

Kinnear, K. E. Jr. (1993) Generality and Difficulty in Ge-
netic Programming: Evolving a Sort, in Proceedings of the
Fifth International Conference on Genetic Algorithms, S.
Forrest, Ed San Mateo, CA: Morgan Kaufmann, pages
287-294.

Koza, J. R. (1992) Genetic Programming: on the Program-
ming of Computers by Means of Natural Selection, ISBN
0-262-11170-5, MIT Press, Cambridge, Massachusetts.

Koza, J. R. (1994) Genetic Programming Il: Scalable Au-
tomatic Programming by Means of Automatically Defined
Functions, MIT Press, Cambridge, Massachusetts (in
press).

Mataric, M. J. (1993) Designing Emergent Behaviors: From
Local Interactions to Collective Intelligence, in From An-
imals to Animats 2: Proceedings of the Second Interna-
tional Conference on Simulation of Adaptive Behavior
(SAB92), Meyer, Roitblat and Wilson editors, MIT Press,
Cambridge, Massachusetts, pages 432-441.

Ngo, J. T. (1993) and J. Marks, Spacetime Constraints Re-
visited, Proceedings of SIGGRAPH 93 (Anaheim, Califor-
nia, August 1-6, 1993), in Computer Graphics Proceed-
ings, Annual Conference Series, 1993, ACM SIGGRAPH,
New York, pages 343-350.

Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Dis-
tributed Behavioral Model, in Computer Graphics, 21(4)
(SIGGRAPH '87 Conference Proceedings) pages 25-34.

Reynolds, C. W. (1988) Not Bumping Into Things, in the
notes for the SIGGRAPH '88 course Developments in
Physically-Based Modeling, pages G1-G13, published by
ACM-SIGGRAPH.

Reynolds, C. W. (1993) An Evolved, Vision-Based Behav-
ioral Model of Coordinated Group Motion, in From Ani-
mals to Animats 2: Proceedings of the Second Interna-
tional Conference on Simulation of Adaptive Behavior
(SAB92), Meyer, Roitblat and Wilson editors, MIT Press,
Cambridge, Massachusetts, pages 384-392.

Reynolds, C. W. (1993) An Evolved, Vision-Based Model
of Obstacle Avoidance Behavior, in Artificial Life II,
Santa Fe Institute Studies in the Sciences of Complexity,



Proceedings Volume X VI, C. Langton, Ed. Redwood City,
CA: Addison-Wesley.

Reynolds, C. W. (1994a) Evolution of Obstacle Avoidance
Behavior: Using Noise to Promote Robust Solutions, in
Advances in Genetic Programming, K. E. Kinnear, Jr., Ed.
Cambridge, MA: MIT Press.

Reynolds, C. W. (1994b) The Difficulty of Roving Eyes, in
Proceedings of the IEEE World Congress on Computa-
tional Intelligence, IEEE (in press).

Syswerda, G. (1989) Uniform Crossover in Genetic Algo-
rithms, in Proceedings of the Third International Confer-
ence on Genetic Algorithms, pages 2-9, Morgan Kaufmann
Publishers.

Syswerda, G. (1991) A Study of Reproduction in Genera-
tional and Steady-State Genetic Algorithms, in Founda-
tions of Genetic Algorithms, G. J. E. Rawlins, Ed. San Ma-
teo, CA: Morgan Kaufmann, pages 94-101.

Tackett, W. A. (1994) and A. Carmi, The Donut Problem:
Scalability, Generalization, and Breeding Policy in the
Genetic Programming, in Advances in Genetic Program-
ming, K. E. Kinnear, Jr., Ed. Cambridge, MA: MIT Press.

von Neumann, J. (1987) Probabilistic Logics and the Syn-
thesis of Reliable Organisms from Unreliable Compo-
nents, in Papers of John von Neumann on Computing and
Computer Theory, W. Aspray and A. Burks Eds. Cam-
bridge, MA: MIT Press.

Zapata, R. (1993) P. Lépinay, C. Novales, and P. Deplan-
ques, Reactive Behaviors of Fast Mobile Robots in Un-
structured Environments: Sensor-based Control and Neu-
ral Networks, in From Animals to Animats 2: Proceedings
of the Second International Conference on Simulation of
Adaptive Behavior (SAB92), Meyer, Roitblat and Wilson
editors, MIT Press, Cambridge, Massachusetts, pages 108-
115.

]

] STy @

.

RENEARE NAR A

¢
VY

Figure 10: some tests of generalization. Controllers evolved in
runs z4 and z6 have been placed in corridors containing novel
features. Corridors used in their evolution had only right angles,
were of constant width, and contained no branch points.







