
Terrain Rendering
Research for Games

Jonathan Blow

Bolt Action Software

jon@bolt-action.com

Lecture Agenda

• Introduction to the problem

• Survey of established algorithms

• Problems with established algorithms

• How we solved these problems

• Future work

Gameplay goals for a
terrain engine

• Large enough to travel around for hours

• Detailed when seen at a human scale

• Dynamic modification of terrain data

• Runs at high, stable frame rates

• Need fast rotation of viewpoint

Technical goals
 to support gameplay

• Level-of-detail management (static or
continuous?)

• A lot of polygons (231 in un-reduced terrain,
70,000+ in a given tessellation)

• Rendered polygons economically represent
the terrain

• Near-field detail

Chief terrain CLOD papers:

• Lindstrom-Koller (SIGGRAPH ‘96)

• ROAM (M. Duchaineau et al, IEEE
Visualization ‘97)

• Rottger et al

Geometry management

• Our previous games used variants of Lindstrom-
Koller

• We wanted to switch to ROAM for increased
versatility and efficiency.

• We’ll now survey both of these systems.

Lindstrom-Koller and ROAM
both use a binary triangle tree.

Lindstrom-Koller algorithm

• Operates bottom-up on a
height field.

• Considers vertex-removal
error projected to the
viewport.

• If the projection is small, we
can remove the vertex.

Lindstrom-Koller:
frame coherence

• Vertices are grouped into
blocks, sorted by error value.

• Reduces the number of
vertices evaluated each
frame.

ROAM algorithm

• Operates top-down on
bounding volumes.

• Considers the projection of
each bounding volume to the
screen.

• If the projection is large, we
subdivide the volume.

ROAM: frame coherence

• Two priority queues: split queue, merge
queue

• Highest-priority wedges are split and
merged to maintain equilibrium triangle
count.

• Priorities modified according to viewpoint
motion.

Why we were so excited
about ROAM

• Because it’s top-
down, it does not
dictate the form of
your terrain data.

• We could use terrain
consisting of Bezier
patches with
displacement maps.

The binary triangle tree
is an excellent tessellator
for curved surface terrain.

• Most people who work on Bezier surface
terrain use rectangular subdivision.

• BTTs provide easier crack fixing and tighter
resolution adaptation.

• The height map guys and the Bezier patch
guys just don’t talk to each other?

We implemented ROAM

• It ran slowly -- didn’t scale.

• Spent a long time trying to optimize it.

• Other game developers have had similar problems.

• Games that use ROAM-style algorithms usually
throw away the frame-coherence portions. This
results in “split-only ROAM”.

The Evil Feedback Loop

• The longer you take to simulate a frame, the
further the viewpoint moves in that frame.

• Thus the algorithm has to do more work
next frame: longer simulation time.

• There’s a catastrophe point where you can
no longer keep up with real time: frame rate
plummets toward 0.

Minor improvements to increase
ROAM tessellation accuracy

• Separate wedge ascent and descent

• Child-volume bounding versus contained-
vertex bounding

• We were able to decrease polygon output
by 40% for our data set.

viewpoint

The problem with top-down
terrain rendering systems

• The bounding volumes hide information
about the position of the maximal error.

• In making pessimistic assumptions about
the projection, they sacrifice tess. efficiency.

viewpoint

In an LOD’d scene, polygons tend to be
roughly the same size in screen pixels.

A large percentage of polygons
are small and close (50%? 60%?)

ROAM hindered by
the basic nature of LOD

• We cannot get good priority bounds on
polygons that are nearby.

• Polygons that are nearby comprise 50% of
our tessellation.

• This hurts.

ROAM’s running time

• The ROAM paper states it’s O(n),
n = number of LOD operations per frame.

• ROAM priority queues perform sorting.

• ROAM is actually O(mlogm),
m = number of triangles in tessellation.

ROAM’s lack of directionality
is a problem.

• We don’t know where wedges are relative to the
viewpoint; only how “distant” they are.

• Priorities of all wedges decrement at the same
rate… even wedges you are moving away from.

Distance d Distance d

General problem with
established CLOD algorithms:

Weak correlation

• The algorithms use 1-dimensional
correlation between vertices to gain speed
(within-block sorting in LK, sorted priority
queues in ROAM)

• They spend CPU resolving ambiguities in
this 1D ordering.

• We could do better correlating in 3D.

Fn(v) = pn

 pn < pthresh?

• F maps the 3-dimensional argument v into
the one-dimensional result p

• There are 3 dimensions’ worth of
information in F but we see only the 1D
shadow of that in p.

• Every point in p represents an infinite
number of points in F aliased together.

Changing the way we think
about the projected error.

• Rather than evaluating
Fn(v), we look at Fn

itself.

• The set of points for
which Fn(v) = pthresh

forms a boundary surface
in 3D space.

• This is an isosurface of
the implicit function Fn.

F(v) < pthresh

F(v) = pthresh

Isosurface LOD testing

• When the viewpoint
crosses into an
isosurface, enable the
vertex.

• When the viewpoint
crosses back out,
disable the vertex.

How we gain efficiency

• If B is contained in A,
the viewpoint cannot
enter B without first
crossing A.

A

B

How we gain efficiency

• We store the isosurfaces
in a tree. We only
descend into nodes when
the viewpoint crosses an
isosurface.

• Statistically, terrains will
exhibit a lot of natural
hierarchy.

• Split tree, merge tree

Clustering

• At the root level of the
isosurface tree we will
have thousands of
intersecting surfaces.

• We introduce extra
bounding volumes to
cluster these nodes
together.

Clustering

• At the root level of the
isosurface tree we will
have thousands of
intersecting surfaces.

• We introduce extra
bounding volumes to
cluster these nodes
together.

Performance

• The number of node traversals is O() the
number of LOD operations required that frame,
with a slight overhead for cluster nodes. “You
only pay for what you get (mostly)”.

• To make things extra speedy, we use spherical
isosurfaces. However, the basic algorithm
works with surfaces of any shape.

Lindstrom-Koller isosurface

Performance

• 231 triangles, 50k in tessellation, 12k in frustum

• Quickly moving viewpoint.

• ROAM gave us 1fps, unstable performance.

• Lindstrom better at 8fps, moderately stable.

• Isosurfaces fastest at 30+fps, very stable.

Tessellation improvement

• 640x480 rendering, 3-pixel error

• ROAM-style wedges: 86284 triangles

• Direct isosurfaces: 56234 triangles

Tessellation improvement

• How low an error bound can we hit with a
budget of 100,000 triangles?

• ROAM-style wedges: 2.75 pixels

• Direct isosurfaces: 2.17 pixels

Vertex buffers

• Pack vertices into an array that gets
shipped off to the card.

• Expensive to create or modify; cheap to
render.

• Difficult to use vertex buffers with
dynamic LOD.

Using the isosurfaces to predict
mean-time-to-modification

• We can make vertex buffers out of
isosurfaces that don’t come very close to the
viewpoint.

• We cluster these vertex buffers spatially so
we can do reasonable frustum culling.

• Software buffers to take care of The Other
50%.

Changing the basic
rendering method

• Now to render the scene, we begin at the
root of the isosurface tree and work our way
downward.

• We no longer use the binary triangle tree for
rendering; so we phase it out entirely.

Future work

Future work:
The binary triangle tree?

• The binary triangle tree causes extra triangle
splits to fix cracks.

• How much overhead does this produce?

• Some algorithms like Rottger’s and Ulrich’s
triangulate quadtree blocks instead. They have
differing crack fixing policies.

• What is the relationship between crack fixing
policy, tessellation density, and scene quality?

Future work:
A better error metric?

• Lindstrom-Koller uses vertical displacement to
measure error. Garland/Heckbert use normal
displacement.

• Is linear displacement even a good error metric?
What are other (non-ad-hoc) options?

• We need a metric that judges the algorithm’s
final output. (cf. PSNR)

Future work:
Batched LOD operations?

• Our LOD decision-making is fast enough
now to be negligible for our target detail
levels.

• However our algorithm still suffers a
catastrophe at high viewpoint speeds due
to the aggregate cost of all the split/merge
operations per frame.

• Some way to perform many splits/merges
at once would be good.

Terrain Rendering
Research for Games

Jonathan Blow

Bolt Action Software

jon@bolt-action.com

